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The problem of heat and mass transfer between the air flow in an underground structure and the surrounding rock 

mass is considered. A method is developed for calculation of the air humidity, temperature and moisture fields in the 

rock mass. 

Introduction. Effective operation of  underground structures (US) necessitates that definite microclimatic parameters be 

maintained in them. 

Microclimate of US develops under the influence of inner and outer heat and mass sources on the atmosphere of the 

structure. 

Effective choice of the means for monitoring the microclimate requires a method for forecasting the heat and mass 

transfer between the structure and surrounding rock mass. The mutual thermal effect of US and the surrounding mass and the 

development of fluid flows between US and voids in the mass are components of the transfer process. The processes are 

interrelated. The rate of change of ventilation air temperature and humidity in US depends on the temperature and moisture 

fields in the surrounding mass. The contact between the moist rocks and air flow in US induces moisture migration towards the 

structure surface, because of which the moisture content in US increases and the adjacent rocks become dry. According to [1], in 

airways subject to long-time ventilation the moisture flow density amounts to 2-10 g/(m 2 .h). 

In this article the mathematical problem of heat and mass transfer between US and the rock mass is posed including the 

effects enumerated. An approximate method is suggested for its solution, the calculation results obtained with the method are 

presented, and the features of the solutions are analyzed. 

Statement of the Problem and Main Design Formulas. A cylindrical airway in an infinite rock mass is considered. An air 

flow with temperature and moisture content preset in the starting section moves along the airway with a known velocity. 

Equations, which describe the heat and mass transfer process in the assumed conditions will be written in a dimensionless form. 

The calculations will remain within the scope of simplifying assumptions, usually adopted in this class of problems [2]. The heat 

and vapor transfer equations in the ventilation air flow: 
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It is assumed that water migration in the rock mass occurs in a liquid phase following Fick's law; heat is transferred by 

conduction�9 Under these conditions the dimensionless heat and mass transfer equations in the mass will be written as 
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The initial conditions: 
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The boundary conditions: 
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We introduce the following dimensionless variables and parameters: 
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First, we consider solution of  the problem (5)-(8). With the assumption of  a small time change of the air temperature in 

the section considered, the problem will be solved with the integral method [3]�9 We obtained the dimensionless temperature 
profile in the mass within the heat disturbance region 1 < r _< Rh: 

: 0  = (9) 
Rh - -  1 - -  Rh In R1~ -" 

Here 0 w -= 0 I r = 1; Rh is the dimensionless radius of the thermal effect, defined as in [3]�9 
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Fig. 1. Comparison of the approximate analytical (curves) and numerical 

(dots) solution of the problem (5)-(8): 1, 2) qin(t) (moisture migration neglect- 

ed and included); 3) qin(t); qh -- 00/0r Jr=l; qin --- 0U/0r Jr=l" 

Substituting Eq. (9) into the boundary condition (7), we arrive at the transcendental equation for 0w: 

o~, (R,,  - -  1) 
= ~s (0~, - -  0a) -}- LP (0~, fp). (10) 
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Now, proceed to the problem (6), (8) of moisture transfer in the rock. U s i n g  the same method as was employed in the 

temperature problem, we express the dimensionless moisture content as 

U~ R a - - r  + R d l n ~  (11) 
U =  

Ra - -  1 - -  Ra In Ra 

where R d is the dimensionless radius of the diffusion effect defined by the relation 

The substitution of Eq. (11) into the boundary condition (8) gives the equation for U w 
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In order to estimate the accuracy of the method, the problem (5)-(8) was solved numerically with the finite difference 

method [4]. The values of the dimensionless temperature and moisture gradients at the airway wall at different times were 

compared. The comparison results are given in Fig. 1. The deviations are within 7%. 

Thus, the problem of  heat  and moisture transfer in the air flow posed in this way is solved separately from the problem 

of moisture migration in the rock mass. It is assumed here that the rate of moisture flow from the mass to the airway surface 

provides an air flow from the surface to the air defined by the difference of partial pressures of saturated steam in the near-sur- 

face voids and steam in the air. 

The problem of determining the temperature and moisture content in a cylindrical airway with a circular cross section 

reduces to integration of a set of two ordinary differential equations of the first order (1) and (2) with the boundary conditions 

(3) and (4) and with Eq. (10). 

When the rate of  moisture flow from the mass to the airway surface becomes smaller than that of moisture flow from 

the surface into the air, the near-surface rock layer starts to dry. In that layer the moisture content drops below the maximal 

hygroscopic moisture contents u2h, and moisture is transferred only as vapor. In the other region it may be assumed that the 

whole moisture transport  occurs in the liquid phase [5]. Hence it follows that moisture evaporation takes place in a narrow 

region near the drying boundary r = s where 

U2lr=s+O = U21g,; U,~]r=s--O = P2p- (14) 
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Using the notion of a mass conductivity ~'mc, we write the boundary conditions at the evaporation surface and at the 

airway surface as follows: 
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The heat conduction equation in the dried and moist regions: 
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The liquid moisture migration equation (6) holds in the region r _> s. 

Consider the approximate method for this problem solution. As before, introduce regions of thermal s _< r < R h and 

migratory R d _> r -> s disturbance. First, we consider the problem for the temperature field. The solution will be sought in the 
dried region 1 _< r _< s as a quasisteady logarithmic profile: 

Oa = 6~ + O~ - -  Oa r �9 l n - - .  

, ~ d s  

Similarly to Eq. (9), the temperature profile in the moist rock region will be assumed in the form 

0T = (23) 

Rh - -  s - -  RI, In .. Rh 
S 

The expressions satisfy the conditions at the boundary of the thermal disturbance region and conditions (16), (18), (19). 

Substituting them into condition (17), we arrive at the transcendental equation 
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Fig. 2 Calculation results for the plane problem: 1) 0w(t); 2) 0s(t); 3) s(t). 
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Thus, for determining the three unknown functions 0s(t), s(t), and Rh(t ) we have Eq. (24) and the function R h = Rh(t ) 
[3]. The missing relation will be sought from consideration of moisture transfer. 

As in the case of Eq. (11), with the condition (15) and conditions at the boundary of migratory disturbance region the 

expression for dimensionless moisture content in the region s < r _< R d will be sought in the form 

Ula(t~d--r @ R~ln ~ r  ) 

U - ~  '~ Rd J (25) 
Re - -  s -.- R~ ln  r Ra 

The substitution of Eq. (25) into the condition (16) yields 
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The values of R h and R d will be determined for each time moment,  then the unknown functions s(t) and 0s(t ) will be 

found from the set of Eqs. (24) and (26). With these functions, using Eqs. (22), (23), and (25), we will determine the tempera- 

ture and moisture distribution for every time moment.  

The algorithm may be employed when the air temperature and humidity in the section considered are known. When it 

is necessary to find the temperature and humidity of ventilation air, the heat and vapor transfer equation in the flow should be 

added to the set of Eqs. (15)-(21) 

C2 00a _ 0 , , - -  O a t  C3; (27) 
Ox 

D~ cO~ _ P(0~, q~) + D~. 
Ox 1 +  1 lns  (28) 

Rs  
The relations (3) and (4) serve as boundary conditions for the equations. 

The set (27), (28) is integrated with a numerical method. In every plane section, starting with the section x = 0, we 

determine s, 0s, and 0 w with the algorithms developed for the plane problem. With these values, from the set (27), (28) we 

estimate 0 a and ~o in the subsequent section where the procedure is repeated. 
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Fig. 3. Variation of the dimensionless temperature (solid curves), 

dimensionless moisture content of  ventilation air (dot ted-dashed lines) and 

the dried region configuration (dashed curves) for different times: 1) t = 

4 .10-4;  2) 0.087; 3) 0.5. 

In Fig. 2 the calculation results are presented for heat and mass transfer around the airway with known temperatures 

and moisture contents of ventilation air (the plane problem). The calculations were conducted with the following initial data: 

Ta0 = 20~ TO = 5~ 2 = 0.002; 2 T = 1.16 W/(m.deg); h a = 1 W/(m.deg); R 0 = 4.75 m; R i = 4.73 m; kin = 1.16 

W/(m .deg); ~mc in = 0.32.10 -11 kg/(m 2 .sec); ;lmc = 0.62.10 - u  kg/(m 2 .sec); u2h = 0.1; U20 = 0.2; amz = 0.4 "10 -8 m2/sec; 

= 2000 kg/m3; x T = 0.472.10 -6 m2/sec; Pl  = 0.484.10 -3  kg/m 3. 

It is noteworthy that in this example at the beginning of the process 0w(0 ) < 0, subsequently 0 w decreases to the initial 

formation of the dried region. The decrease can be explained by the fact that in this case the heat flow is directed towards the 

evaporation front and as it reduces and the mass is cooled, the temperature of the evaporation surface drops. 

Figure 3 shows the calculated temperatures and moisture contents of ventilation air and the dried region configuration 

along the structure length at different times (the conjugate problem). 

Conclusion. The problem of heat and mass transfer bet@een the ventilation air in an underground structure and the 

surrounding rock mass is mathematically formulated. Approximate analytical and numerical methods, and a computer program 

based on the methods are developed, variations of the parameters of ventilation air, temperature and moisture fields in the rock 

mass, and the dried region configuration are calculated. Comparison of the analytical and numerical methods has shown good 

agreement. 

The method can be used for choosing the US design parameters, ensuring a required air temperature and humidity and 

for developing software for computer-aided control of conditioning systems. 

NOTATION 

T, time, sec; To, starting moment of operation, sec; r, radial coordinate, m; R0, outer radius of heat and water insulation 

of the structure, m; Ri, flow section radius, m; )~t(2d), thermal conductivity of moist (dried) mass, W/(m deg); tCt(Kd) , thermal 

diffusivity of moist (dried) mass, m2/sec; 2 i thermal conductivity of the insulation, W/(m 2 .deg); ~i, coefficient of heat transfer 

from the air to inner surface of the structure, W/(m 2.deg); Ta, air temperature, ~ To, natural temperature of the rock mass 

at the depth of foundation, ~ u2, natural moisture content of the rock mass; U2h , maximum hygroscopic moisture content; U2e , 

equilibrium moisture content; 2, section-averaged air humidity, kg vapor/kg dry air; ~:0, the same in the starting section; Pas, 

saturated steam pressure at the evaporation surface temperature, Pa; Ppa, partial steam pressure in the air; Paso saturated steam 

pressure at Tao; Ppa0, partial steam pressure in the starting section, Pa; r12 , specific vaporization heat, J/kg; ares , coefficient of 

mass transfer from the air to inner surface, kg/(m 2.sec.Pa);  2mc , mass conductivity of the rock mass, kg/(m 2.sec); 2mc in , the 

same for water insulation; g, gravitational acceleration, m/sec2; Pl, steam density, kg/m3; V, volumetric density of the rock mass 

skeleton, kg/m2; Vx, air flow velocity, m/sec; Ca, specific heat of the air, J/(kg .deg); Pa, air density, kg/m3; qhs l, heat rate of inner 

sources in the structure per meter run, W/m; I1, vaporization rate in the air volume per meter run, kg/(m .sec); IAs, intensity of 

inner steam sources, kg/(m .sec); g, dried region radius; T w, temperature of the outer water isolation surface; Ts, temperature at 

the dried region boundary; am2 , potential conductivity of the rock mass, m2/sec; ~, longitudinal coordinate, m; Ls, structure 

length, m; T, rock mass temperature, ~ 
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T H E  E F F E C T I V E  P E R M E A B I L I T Y  T E N S O R  O F  H E A V I L Y  

I N H O M O G E N E O U S  GROUNDS 

S. E.  K h o l o d o v s k i i  UDC 532.546 

A method is developed for the construction of the effective permeability tensor in an anisotropic model of non- 

deformable grounds with a complicated structure, consisting of systems of mutually parallel layers, joints, and slightly 

permeable screens (interlayers), enclosed in one another (each layer of  one system consists of arbitrary oriented 

layers, joints and screens of another). A new filtration model of  joints and screens is suggested. 

Filtration processes are usually associated with expressed inhomogeneity of natural grounds because of their stratified 

structure, jointing, presence of slightly pervious screens, etc. [1, 2]. Tectonic joints and screens often appear at the interface of 

heterogeneous layers and form substantially regular systems [2, 3] such as free and sealed slits, veins, and interlayers. 

Accurately posed filtration problems in stratified grounds (conjugation problems) were solved in a general form for two, 

three, and four homogeneous zones (layers), separated by straight lines and circumferences (see the review in [4]). Numerous 

approximate methods have been developed for the conjugation problems with an arbitrary number of layers ([5-7] et al.). For 

systems of layers enclosed in one another the conjugation problem is essentially complicated, and in its solution the properties 

of grounds are globally averaged, i.e. their effective filtration parameters are determined. In [8-10] tensors of effective permeabil- 

ity were found for one system and two systems of mutually orthogonal periodical of layers. For jointly (cracked) porous media a 

model was suggested in [11] as two mutually penetrating continua with an average scalar permeability of blocks and joints. The 

effective permeability tensors were constructed for nondeformable [2, 3] and deformable [12, 13] jointly grounds. The authors 

quoted considered relatively simple structures of jointly grounds when the blocks are either impermeable or permeable and 

homogeneous. Moreover, the liquid flow in a joint is based on the model of viscous liquid motion through a channel with 

impermeable walls, and according to the model, hydraulic permeability of the joint is proportional to the cube of its opening 

(Boussinesq's formula) [2, 3, 6, 9, 12], that is permeability of fine joints is negligibly small. This model, based on the lubrication 

theory [14], is sufficiently idealized in the filtration theory where the wall surfaces of the joints are usually permeable and can be 

in contact at several points, the joints being partially or fully filled with debris materials [2]. As regards filtration, a joint is a 

layer, whose thickness is much smaller and permeability much larger than the characteristic parameters of the ground. 

The article describes a method for constructing the effective permeability tensors for nondeformable grounds, which 

consist of arbitrary oriented anisotropic inhomogeneous systems of layers, joints and screens enclosed into one another with an 

arbitrary depth of enclosure. Moreover, a filtration model of joints and screens is suggested in the form of degenerating layers of 
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